Inference in Kingman's Coalescent with Particle Markov Chain Monte Carlo Method
نویسندگان
چکیده
We propose a new algorithm to do posterior sampling of Kingman’s coalescent, based upon the Particle Markov Chain Monte Carlo methodology. Specifically, the algorithm is an instantiation of the Particle Gibbs Sampling method, which alternately samples coalescent times conditioned on coalescent tree structures, and tree structures conditioned on coalescent times via the conditional Sequential Monte Carlo procedure. We implement our algorithm as a C++ package, and demonstrate its utility via a parameter estimation task in population genetics on both singleand multiple-locus data. The experiment results show that the proposed algorithm performs comparable to or better than several well-developed methods.
منابع مشابه
Running Coalescent Analyses With coalescentMCMC
Coalescent analyses have emerged in the recent years as a powerful approach to investigate the demography of populations using genetic data. The coalescent is a random process describing the coalescent times of a genealogy with respect to population size and mutation rate. In the majority of cases, the genealogy of individuals within a population is unknown. So a coalescent analysis typically c...
متن کاملPhylodynamic Inference for Structured Epidemiological Models
Coalescent theory is routinely used to estimate past population dynamics and demographic parameters from genealogies. While early work in coalescent theory only considered simple demographic models, advances in theory have allowed for increasingly complex demographic scenarios to be considered. The success of this approach has lead to coalescent-based inference methods being applied to populati...
متن کاملScalable Statistical Methods for Ancestral Inference from Genomic Variation Data
Scalable Statistical Methods for Ancestral Inference from Genomic Variation Data by Andrew Hans Chan Doctor of Philosophy in Computer Science University of California, Berkeley Professor Yun S. Song, Chair Developments in DNA sequencing technology over the last few years have yielded unprecedented volumes of genetic data. The resulting datasets are indispensable for a variety of purposes, from ...
متن کاملQuartet Inference from SNP Data Under the Coalescent Model
MOTIVATION Increasing attention has been devoted to estimation of species-level phylogenetic relationships under the coalescent model. However, existing methods either use summary statistics (gene trees) to carry out estimation, ignoring an important source of variability in the estimates, or involve computationally intensive Bayesian Markov chain Monte Carlo algorithms that do not scale well t...
متن کاملBayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013